

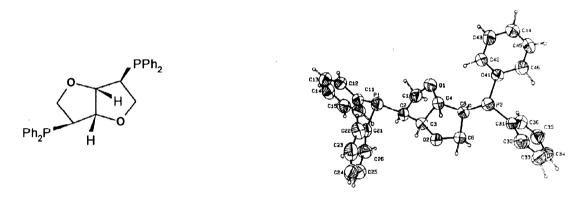
The First Asymmetric Carbonylation of 1-(6'-Methoxy-2'-naphthyl)ethanol to the Methyl Ester of (S)-Naproxen

Bao-Han Xie, Chun-Gu Xia, Shi-Jie Lu, Ke-Jun Chen, Yuan Kou and Yuan-Qi Yin*

State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences, Lanzhou 730000, P.R.China

Received 17 January 1998; accepted 20 April 1998

Abstract: 1-(6'-Methoxy-2'-naphthyl)ethanol is asymmetrically carbonylated to the methyl ester of (S)-naproxen in a PdCl₂-CuCl₂-DDPPI (DDPPI: 1,4:3,6-dianhydro-2,5-dideoxy-2,5-bis(diphenylphosphino)-L-iditol) catalytic system with a chemical yield of 90% and an optical yield of 81% e.e.. The reaction was carried out in ethyl methyl ketone under 100°C and 8 MPa of CO for 24-48h. © 1998 Elsevier Science Ltd. All rights reserved.


Synthesis of (S)-naproxen through homogeneous catalytic processes has received considerable attention in recent years¹. Asymmetric hydrogenation process of 2-(6'-methoxy-2'-naphthyl)acrylic acid is effective, chiral ruthenium and rhodium complexes have been used to give an optical yield more than 95% e.e. at a conversion of 100%². Asymmetric hydroesterification of olefins is also effective. Catalyzed by PdCl₂-CuCl₂-BNPPA, 2-vinyl-6-methoxynaphthalene was asymmetrically hydroesterified to (S)-naproxen with an optical yield of 85%³. It is worth noting that 2-(6'-methoxy-2'-naphthyl) acrylic acid and 2-vinyl-6-methoxynaphthalene are not commercially available.

Scheme 1.

We therefore propose an asymmetric carbonylation process in which methyl ester of (S)-naproxen (2) is prepared from 1-(6'-methoxy-2'-naphthyl)ethanol (1) (as shown in Scheme 1). The alcohol 1 can be easily obtained from the industrial intermediate, 6-methoxy-2-acetylnaphthalene, over a 5wt% Pd/C catalyst at a conversion of 100% in THF.

The reaction conditions were optimized and some of the results are listed in Table 1.

The steric and electronic properties of chiral phosphine ligands exert a dramatic influence on the catalytic activity and selectivity of this reaction. DDPPI (1,4:3,6-dianhydro-2,5-dideoxy-2,5-bis(diphenylphosphino)-L-iditol) has four chiral carbon centers, two of them, connected to phosphorus atoms, are in 8 forms ⁴. Crystal X-ray diffraction analysis shows that DDPPI has a rigid frame and a strong steric hindrance (Scheme 2)⁵. The distance between P1-P2 is 6.24 Å. These features lead to a non-chelating character and are responsible for the highly chiral induction of some reactions. DDPPI was found very effective in the asymmetric hydroesterification of styrene in our previous work(99.3 % e.e.)⁶. Application of this ligand to the asymmetric carbonylation of alcohol 1 also gives good results(Table 1).

Scheme 2

Both the ratio of DDPPI/Pd and acidity of the acids used have a significant influence on the chemical and optical yields. As shown in Table 1, 90% chemical yield and 76% optical yield are obtained with the ratio of DDPPI/Pd = 1.5/1 in the presence of p-toluenesulfonic acid (p-TsOH)(Run No.2). Higher ratio (DDPPI/Pd = 3/1) can enhance the optical yield to 81% e.e. but decrease the chemical yield to 54% (Run No.3). CF₃COOH has a negative influence on the optical yield and is corrosive to the autoclave (Run No.7).

Solvents play a prominent role in the reaction course. Dioxane and tetrahydrofuran are effective, but methyl ethyl ketone is the optimum. A weak coordination of the solvents with palladium may be involved.

Cocatalyst CuCl₂ has a positive influence on the regio- and enantioselectivities of the reaction (Run No.5 and 6).

Under these reaction conditions, a trace amount of the normal product (methyl 3-(6'-methoxy-2'-nathphyl)propanoate) is detected.

For a typical procedure, PdCl₂, CuCl₂, 1, p-TsOH, DDPPI, CH₃OH, methyl ethyl ketone were added into a 20 ml autoclave. Under the conditions of 8 MPa CO and 100 °C, the reaction was maintained for 24-48 h. Yield of the methyl ester 2 was determined by GC analysis based on the starting alcohol 1. Optical yield was

determined by 1 H NMR with chemical shifting reagent (Eu(hfc)₃) after column separation of the crude product (gel silica, 200-300 mesh, n-hexane/ethyl acetate = 10/1). The methyl ester of (S)-naproxen can be hydrolyzed into (S)-naproxen if desired.

Table 1. Asymmetric Carbonylation of 1-(6'-Methoxy-2'-naphthyl)ethanol to Methyl Ester of (S)-Naproxen Catalyzed by PdCl₂-CuCl₂-DDPPI System

	······································	1/Pd/Cu/DDPPI	***************************************	Yield of 2	Optical purity of 2
Run No.	Acids	(mol)	b/n ¹	% 1	% e.e ²
1	p-TsOH	50/1/2/1	90/10	85	56
2	p-TsOH	50/1/2/1.5	96/4	90	75
3	p-TsOH	50/1/2/3	99/1	54	81
4	p-TsOH	100/1/2/1.5	90/10	70	60
5	p-TsOH	50/1/0/1.5	85/15	81	42
6	p-TsOH	50/1/4/1.5	97/3	90	77
7	CF₃COOH	50/1/2/1.5	82/18	93	11

Reaction conditions: 1, 2.0 mmol; p-TsOH or CF₃COOH, 0.4 mmol; methyl ethyl ketone, 5.0 ml; time, 40h; temperature, 100 °C; CO, 8 MPa.

b: Methyl ester of (S)- naproxen (The branched product)

Palladium(II) complexes with chiral phosphine ligands are important precursors in asymmetric carbonylation reactions⁷. The mechanism of olefin hydrocarboxylations is well-known⁸; nevertheless, the mechanism of α -aryl ethanol carbonylations is still not clear. We are trying to prepare Pd-Cu-DDPPI complex under the reaction conditions to gain more insight into the reaction mechanism. The experiment is in progress.

In summary, the asymmetric carbonylation of 1-(6'-methoxy-2'-naphthyl)ethanol to methyl ester of (S)-naproxen catalyzed by PdCl₂-CuCl₂-DDPPI system is stereoselective and regioselective at high chemical yields.

REFERENCES AND NOTES

1. Sonawane, H. R.; Bellur, N. S.; Ahuja, J. R.; Kulkarni D. G. Tetrahedron: Asymmetry 1992, 3(2), 163.

¹ Determined by GC analysis.

² Determined by ¹H NMR with chemical shifting reagent (Eu(hfc)₃). Configuration was determined by the signs of optical rotation.

n: The normal product

- 2. a) Ohta, T.; Takaya, H.; Kitamura, K.; Nagai, K.; Noyori, R. J. Org. Chem. 1987, 52, 3174.
 - b) Manimaran, T.; Wu, T.-C.; Klobucar, W. D.; Kolich, C. H.; Stahly, G. P. Organometallics 1993, 12, 1467.
- 3. Stille, J. K.; Parrinello, G. J. Am. Chem. Soc. 1987, 52, 3174.
- 4. Bakos, J.; Heil, B.; Marko, L. J. Organomet. Chem. 1983, 253, 249.
- 5. Crystal structure data for DDPPI($C_{30}H_{28}O_2P_2$): F(000)=1016, orthorhombic space group $P2_12_12_1$, a=9.460(8)
- Å, b=14.822(5) Å, c=18.424(6) Å, V=2583(2) Å³, Z=4.
- 6. Zhou, H.-Y.; Hou, J.-G.; Cheng, J.; Lu, S.-J.; Fu, H.-X.; Wang, H.-Q. J. Oganomet. Chem. 1997, 543, 227.
- 7. a) Alper, H.; Hamel, N. J. Am. Chem. Soc. 1990, 112, 2803.
- b) Wehman, P.; van Donge, H.M.A.; Hagos, A.; Kamer, P.C.J.; van Leeuwen, P.W.N.M. J. Organomet. Chem. 1997, 535, 183.
- 8. Noyori, R. Asymmetric Catalysis In Organic Synthesis; John Wiley & Sons, Inc.: New York, 1994; pp. 167.